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Abstract

The nature of information #ow from one area of the cerebral cortex to another is poorly
understood. Frequency-dependent measures of information #ow, based on multivariate
autoregressive modeling of "eld potential time series, have shown promise for understanding
information transactions between cortical areas (Liang et al., Neuro Report, 11 (2000)
2875}2880). In the present contribution, a time domain measure of information #ow between
two areas, called the directed transinformation (DTI), is described and applied to investigate
causal in#uences directly from the "eld potential time series. We show that the DTI, as
a generalization of mutual information, can be measured in a rather natural way, such that the
interdependence of two time series is the sum of #ow from X to >, #ow from > to X, and
instantaneous #ow. We demonstrate the usefulness of this technique on both simulated data
and multichannel local "eld potentials from macaque monkeys. Comparison with the fre-
quency-dependent measure is also made. � 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The question of neural signaling in the cerebral cortex has been the subject of
extensive discussion. Interaction is a basic property of the cortical system, taking place
at every level of the cortical hierarchy. In an attempt to understand dynamic interac-
tions among multiple cortical areas, we have employed multivariate statistical
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Fig. 1. Right hemisphere of monkey GE, showing positions of 15 cortical recording sites. Sites depicted by
crossed circles, in striate and inferotemporal areas, are used to demonstrate application of the DTI to
cortical LFPs.

measures of local "eld potential (LFP) time series. One such measure is called the
short-time directed transfer function (STDTF), which determines causal in#uences
between two cortical sites based on spectral analysis of multivariate auto-
regressive time series models. Although this technique has produced very
promising results [5], we were also interested in exploring other methods that
could characterize the temporal relationship between time series without the
intermediate step of model construction. In this contribution, we describe the appli-
cation of a measure called the directed transinformation (DTI) to the study
of dynamic information transfer between di!erent areas of the primate cerebral
cortex.
Event-related LFP data from monkeys were used to test the DTI method. The

LFPs, sampled at 200Hz, were recorded transcortically (surface-to-depth) from bipo-
lar electrodes at up to 15 unilateral sites (Fig. 1) in highly trained macaque monkeys
performing a visuomotor pattern discrimination task [1]. They initiated each task
trial by depressing a lever with the preferred hand. Data collection began about 115
ms prior to stimulus onset and continued until 500 ms poststimulus. The monkeys
were required to discriminate between two pattern types (four dots as a line or
diamond) in a set of four di!erent dot patterns (left- or right-slanted line and
diamond). No single dot could be used to discriminate between lines and diamonds.
The discrimination was indicated by a GO or NO-GO response (release of the lever or
maintenance of pressure). On GO trials, the monkeys were provided with a water
reward at 500 ms poststimulus if the hand was lifted before that time. On NO-GO
trials, the lever was depressed for 500 ms poststimulus, and released thereafter. A data
set of 888 trials from one monkey (GE) balanced for response type (GO vs. NO-GO)
was used in the analysis described below.
The validity of the DTI method was "rst veri"ed through analysis of simulated time

series. Application to cortical LFPs was then demonstrated. Comparison with the
frequency-dependent STDTF measure was also made.
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2. Methods

2.1. Directed TransInformation (DTI)

Mutual information analysis [9] represents a general method to measure the
statistical dependencies between time series, and it can be considered as an alternative
to the well-known correlation analysis. However, mutual information does not
provide information on the direction of interaction since it is a symmetrical measure.
A knowledge of the direction and amount of information #ow can be useful and can
give us an indication of which system (time series) is predominantly acting as a source.
The DTI is a measure of information #ow with such a direction. It is an information
theory quantity that is an extension of Shannon's concept of mutual information to
the idea of directional information #ow. For simplicity, let two series X and > be
represented in the form
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The mutual information between times series X and > is de"ned as [4,8]
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This shows that the DTI between two time series X and > is measured in a rather
natural way such that their dependence is the sum of #ow fromX to>, #ow from> to
X, and instantaneous #ow.
Using the relations I(A;B)"H(A)!H(A�B) and H(A,B)"H(A)#H(B�A),

the DTI fromX at time k to> at time k#M can be written in terms of joint entropies
as:
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It is easy to show that, for n normally distributed random variables, their joint
entropy is given by
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base of the natural logarithm. Hence, the above DTI equation can be rewritten as
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Similarly, other information quantities can be computed. We note that, although the
DTI is given here for only two time series, it potentially can be extended to any
number of time series.

2.2. Short-time directed transfer function (STDTF)

Suppose that X
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autoregressive (MVAR) model is given by
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is uncorrelated noise with covariance matrix �, and A
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are p�p coe$cient

matrices which can be obtained by solving the multivariate Yule}Walker Eqs. (of size
mp�) using the Levinson, Wiggins and Robinson (LWR) algorithm [7]. The model
order m is determined by the Akaike information criterion (AIC) [6].
The transfer function of the MVAR model, H( f ), can be written as [3]
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The directed transfer function is de"ned as the magnitude of the matrix elementH
�
( f )

which measures the causal in#uence from channel i to j. The STDTF is based on the
AMVAR (adaptive MVAR) approach [2] involving adaptive estimation of the
MVARmodel coe$cients with a sliding analysis window. Its usefulness for determin-
ing causal in#uences between cortical areas has been demonstrated in [5].

3. Results

A simulation study was "rst performed in order to test the mathematical formula-
tions. Two stationary time series processes, X and >, were generated by a simple
model [8]:
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Fig. 2. Estimated cross-correlation (a), information #ow pro"les (b, c), and the total information #ow at
each time instant (d) for the simulation model. The occurrence of zeros at all even-valued lags is a property
of the model. There are no negative lags for the DTI (b, c) because of its de"nition. Since the simulated
processes are stationary, the variation of the DTI with time (d) is due to random #uctuation in the simulated
time series. Note that the DTI from X to > is appreciably higher than from > to X for all times. (Time is in
arbitrary units for the simulation model).

where w
�
and w

�
are zero mean white noise processes with �

�
"1, �

�
"0.5, and

a"0.5, b"0.8. In this model, X leading > through the intermediate variable
z


indicates the information #ow from X to >. Such information does not appear in

cross-correlation analysis, since the cross-correlation function is almost completely
symmetric with respect to zero lag, but is revealed by DTIs (Fig. 2). Fig. 2(a) shows the
cross-correlation function averaged over an ensemble of sequences X and >. Fig. 2(b)
and (c) show DTIs from X to > and from > to X, respectively, which were computed
with an 1 point long window. The total amount of information #ow which was
obtained by summing over the time lags at di!erent time instant is plotted in Fig. 2(d)
for both directions. It is clear that the DTI can reveal the direction of information #ow
which is not seen by the cross-correlation function.
Fig. 3 shows the total information #ow from a striate to an inferotemporal cortical

site, and the feedback #ow from the inferotemporal to striate site. The DTI measure is
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Fig. 3. Total information #ows between a striate and an inferotemporal site computed with 5 ms (left) and
15 ms (middle) windows. The STDTF (right) shown has a similar pro"le as the DTI, although it may be
somewhat smeared. The vertical dashed line indicates the stimulus onset.

shown in the left and center frames using windows of 5 ms (1 point) and 15 ms
(3 points) length, respectively. The STDTF is shown in the right frame for comparison,
using a 50 ms (10 points) long window. (All frequency components in the
STDTF spectrum were summed to produce this curve). The DTI curve with 5 ms
window o!ers the greatest temporal resolution, although the DTI curve with 15 ms
window has a similar temporal waveshape. Both DTI curves have greater temporal
resolution than the STDTF curve, which has greater temporal smearing due to the
50 ms window length. Nevertheless, some general features are quite similar for
both methods: (a) the earlier onset of the striate-to-inferotemporal (bottom-up)
in#uence as compared to the inferotemporal-to-striate (top-down); (b) the peak
value near 120 ms poststimulus; (c) the greater magnitude of this peak in the
bottom-up than the top-down in#uence; and (d) a secondary peak near 200 ms
poststimulus.

4. Conclusions

In summary, use of the DTI technique, derived from information theory, may be
a valuable approach to the study of cortical interactions. The DTImeasure has several
advantages, including the fact that it is model-free, and also that it may be used to
reveal nonlinear relations between time series. However, it cannot be used to deter-
mine the frequency components that contribute to directional in#uences since it is
based in the time domain. Therefore, the complementary use of DTI in the time
domain and STDTF in the frequency domain is suggested as a viable approach for
characterizing spectral}temporal interactions in the cerebral cortex.
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