smoke.gif (88110 bytes)


   Ilya A. Rybak, Ph.D.
       


    Professor

  
               

   Contact Information:

   Dept. of Neurobiology and Anatomy
   Drexel University College of Medicine
   2900 Queen Lane
   Philadelphia, PA 19129
   USA
   Tel.: (215) 991-8596
   Fax: (215) 843-9082
   E-mail: ilya.rybak@drexelmed.edu

"Intelligence is what you use when you don't know what to do." (Jean Piaget)

      Our long-term goal is to investigate and understand the key issue of neural control of movement: how different cellular, network and systems neural mechanisms are integrated across multiple levels of organization to produce motor behavior and to adapt this behavior to various external and internal conditions.
      Investigations of the brainstem neural mechanisms responsible for neural control of breathing and neural circuits in the spinal cord involved in control of locomotion provide a unique and attractive opportunity to develop and investigate comprehensive computational models that can bring into a uniform framework the existing experimental data and current hypotheses related to different levels of systems organization and behavior.

      Our modeling studies are performed in close interactive collaboration with multiple leading experimental laboratories located in different universities, states and countries.

Home         Research Interests           Projects             Publications         Lab Members & Collaborators   




Selected research projects


Modeling the locomotor  CPG              Neural control of locomotion              Motor control  

      Network model of respiratory CPG                     Modeling neural control of breathing           

          Behavioral model of visual perception                       Modeling orientation selectivity

 


Selected Publications

Generation of the respiratory rhythm and neural control of breathing

      Rybak, I. A., Paton, J. F. R., and Schwaber, J. S. (1997) Modeling neural mechanisms for genesis of respiratory rhythm and pattern: I. Models of respiratory neurons. J. Neurophysiol. 77: 1994-2006.pubmed-www-nlm.gif (2307 bytes)mini-pdf.gif (361 bytes)
      Rybak, I. A., Paton, J. F. R., and Schwaber, J. S. (1997) Modeling neural mechanisms for genesis of respiratory rhythm and pattern: II. Network models of the central respiratory pattern generator. J. Neurophysiol. 77: 2007-2026.pubmed-www-nlm.gif (2307 bytes)mini-pdf.gif (361 bytes)
      Rybak, I. A., Paton, J. F. R., and Schwaber, J. S. (1997) Modeling neural mechanisms for genesis of respiratory rhythm and pattern: III. Comparison of model performances during afferent nerve stimulation. J. Neurophysiol. 77: 2027-2039.pubmed-www-nlm.gif (2307 bytes)mini-pdf.gif (361 bytes)
      Rybak, I. A., Paton, J. F. R., Rogers, R. F., and St. John, W. M. (2002) Generation of the respiratory rhythm: state-dependency and switching. Neurocomputing 44-46: 603-612.mini-pdf.gif (361 bytes)
      St.-John, W. M., Rybak, I. A., and Paton, J. F. R. (2002) Potential switch from eupnea to fictive gasping after blockade of inhibitory transmission and potassium channels. Am. J. Physiol. (Regul Integr Comp Physiol) 283: R721-R731.pubmed-www-nlm.gif (2307 bytes)mini-pdf.gif (361 bytes)

      Rybak, I. A., Ptak, K., Shevtsova, N. A., and McCrimmon, D. R. (2003) Sodium currents in neurons from the rostroventrolateral medulla of the rat. J. Neurophysiol. 90: 1635-1642.pubmed-www-nlm.gif (2307 bytes)mini-pdf.gif (361 bytes)  
      Rybak, I. A., Shevtsova, N. A., St.-John, W. M., Paton, J. F.R., and Pierrefiche, O. (2003) Endogenous rhythm generation in the pre-Bötzinger complex and ionic currents: Modelling and in vitro studies. Eur. J. Neurosci. 18: 239-257.pubmed-www-nlm.gif (2307 bytes)mini-pdf.gif (361 bytes)

      Rybak, I. A., Shevtsova, N. A., Ptak, K., and McCrimmon D. R. (2004) Intrinsic bursting activity in the pre-Bötzinger Complex: Role of persistent sodium and potassium currents. Biol. Cybern. 90: 59-74.  pubmed-www-nlm.gif (2307 bytes)mini-pdf.gif (361 bytes)
      Rybak, I. A., Shevtsova, N. A., Paton, J. F. R., Dick, T. E., St-John, W. M., Mörschel, M., and Dutschmann, M. (2004) Modeling the ponto-medullary respiratory network. Respir. Physiol. Neurobiol. 143: 307-319.pubmed-www-nlm.gif (2307 bytes)mini-pdf.gif (361 bytes)
      Potts, J. T., Rybak, I. A., and Paton, J. F. R. (2005) Respiratory rhythm entrainment by somatic afferent stimulation. J. Neurosci.  25: 1965-1978.pubmed-www-nlm.gif (2307 bytes)mini-pdf.gif (361 bytes)

      Rybak, I. A., Abdala, A. P. L., Markin, S. N., Paton, J. F. R., and Smith, J. C. (2007) Spatial organization and state-dependent mechanisms for respiratory rhythm and pattern generation. Prog. Brain Res. 165: 201-220.pubmed-www-nlm.gif (2307 bytes)mini-pdf.gif (361 bytes)
      Smith, J. C., Abdala, A. P. L., Koizumi, H., Rybak, I. A., and Paton, J. F. R. (2007) Spatial and functional architecture of the mammalian brainstem respiratory network: a hierarchy of three oscillatory mechanisms. J. Neurophysiol. 98: 3370-3387.
pubmed-www-nlm.gif (2307 bytes)mini-pdf.gif (361 bytes)
      Rybak, I. A., and Smith, J. C. (2008) Computational modeling of the respiratory network. In Encyclopedia of Neuroscience (Eds. Binder MD, Hirokawa N, Windhorst U, Hirsch MC et al.). Springer-Verlag (in press).

Computational modeling of spinal cord circuits and neural control of locomotion

      Rybak, I. A., Ivashko, D. G., Prilutsky, B. I., Lewis, M. A., and Chapin J. K. (2002) Modeling neural control of locomotion: Integration of reflex circuits with CPG. In: Artificial Neural Networks. Lect. Notes Comp. Sci. 2415 (Ed. Dorronsoro, J. R.). Springer, pp. 99-104.mini-pdf.gif (361 bytes)
     Ivashko, D. G., Prilutsky, B. I., Markin, S. N., Chapin, J. K., and Rybak, I. A. (2003) Modeling the spinal cord neural circuitry controlling cat hindlimb movement during locomotion. Neurocomputing 52-54: 621-629.mini-pdf.gif (361 bytes)
      Rybak, I. A., Shevtsova, N. A., Lafreniere-Roula, M., and McCrea, D. A. (2006) Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J. Physiol. Lond. 577(Pt. 2): 617-639. pubmed-www-nlm.gif (2307 bytes)mini-pdf.gif (361 bytes)
      Rybak, I. A., Stecina, K., Shevtsova, N. A., and McCrea, D. A. (2006) Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation. J. Physiol. Lond. 577(Pt. 2): 641-658. pubmed-www-nlm.gif (2307 bytes)mini-pdf.gif (361 bytes)
      McCrea, D. A., and Rybak, I. A. (2007) Modeling the mammalian locomotor CPG: insights from mistakes and perturbations. Prog. Brain Res. 165: 235-253.pubmed-www-nlm.gif (2307 bytes)mini-pdf.gif (361 bytes)
      McCrea, D. A., and Rybak, I. A. (2008) Organization of mammalian locomotor rhythm and pattern generation. Brain Res. Reviews 57: 134-146. pubmed-www-nlm.gif (2307 bytes)mini-pdf.gif (361 bytes)

Neurorobotics

      Giszter, S. F., Moxon, K. A., Rybak, I. A., and Chapin, J. K. (2000) A neurobiological perspective on humanoid robot design. IEEE Intelligent Systems 15: 64-69.mini-pdf.gif (361 bytes)
      Giszter, S. F., Moxon, K. A., Rybak, I. A., and Chapin, J. K. (2001) Neurobiological and neurorobotic approaches to control architectures for a humanoid motor system. Robotics and Autonomous Systems 37: 219-235.mini-pdf.gif (361 bytes)

Visual perception and recognition

      Rybak, I. A., Gusakova, V. I., Golovan, A. V., Podladchikova, L. N., and Shevtsova, N. A. (1998) A model of attention-guided visual perception and recognition. Vision Research 38: 2387-2400. pubmed-www-nlm.gif (2307 bytes)mini-pdf.gif (361 bytes)
      Rybak, I. A., Gusakova, V. I., Golovan, A. V., Podladchikova, L. N., and Shevtsova, N. A. (2005) Attention-guided recognition based on “what” and “where” representations: A behavioral model. In: Neurobiology of Attention (Eds. Itti, L., Rees, G. and Tsotsos, J.). Elsevier Acad. Press, pp. 663-670.mini-pdf.gif (361 bytes)

     

Home         Research Interests           Projects             Publications         Lab Members & Collaborators   

Paintings                                                                        Odessa    

ilya.rybak@drexelmed.edu

Postdoctoral researcher / research associate position is available.Requirements: PhD degree, experience in modeling of single neurons (Hodgkin-Huxley style) and biological neural networks, and strong C++ programming skills. Experience in the analysis of nonlinear systems is an advantage.
Contact:
   ilya.rybak@drexelmed.edu

©2006. Page design by Ilya Rybak
Last updated 04/07/08